Supplementary MaterialsAdditional file 1: Table S1. is associated with tumor progression and poor patient survival. K14-EGFP-transgenic mice also exhibit augmented potential for OSCC induction. Methods Four murine OSCC cell lines, designated MOC-L1 to MOC-L4, are established from tongue tumors induced by 4-nitroquinoline 1-oxide using the K14-EGFP-transgenic mouse model. The genetic disruption, in vitro oncogenicity, and the Gpc3 eligibilities of tumorigenesis and metastasis of the cell lines are analyzed. Results All cell lines show green fluorescence and express a range of epithelial markers. The MOC-L1, MOC-L2 and MOC-L3 cells carry missense mutations in the DNA binding domain of the gene. MOC-L1 exhibits a high level of epithelial-mesenchymal transition and has the aggressive characteristics associated with this. MOC-L1 and MOC-L2 are clonogenic in vitro as well as being tumorigenic when implanted into the dermis or tongue of syngeneic recipients. Nonetheless, only MOC-L1 exhibits immense potential for local regional and distal metastasis. Since the expression of in MOC-L1 xenografts is drastically decreased on cisplatin treatment, it would seem that targeting of might facilitate tumor abrogation. Conclusions As cell lines established in this study originated from the C57BL/6 mouse, the strain most suitable for transgenic engineering, exploring the interplay of these OSCC cells with other genetically modified cells in immune-competent mice would provide important insights into OSCC pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-019-5486-7) contains supplementary material, which is available to authorized users. and transgenic (Tg) mouse lines that have these transgenes overexpressed in the mouse basal keratinocytes [7, 8, 18]. These mice show higher frequency and faster OSCC tumor induction following 4-nitroquinoline 1-oxide (4NQO) treatment [7, 8, 18, 19]. By means of these models, we have uncovered new suppressors that are targeted by these oncogenic miRNAs and unraveled the involvement of DNA defects and the enrichment of oxidative stress in OSCC progression. In addition, due to the rapid tumor induction and fluorescent tumor labeling in these mice, the models have been used to enable new developments in image diagnosis [20]. Xenotransplantation requires a relatively shorter time period to obtain a full-blown tumor than chemical treatment [2]. In addition, Volasertib kinase inhibitor tumor xenografts have more homogeneous characteristics compared to chemically induced lesions. Xenografts of human cancer cells into immuno-compromised mice have helped with the functional elucidation of tumor growth and its interception. However, being able to carry out orthotopic xenotransplantation of mouse OSCC cells into Volasertib kinase inhibitor immunocompetent syngeneic mice would help us to obtain a better and a more comprehensive understanding of tumor complexity, which in part is due to the presence of a relevant tumor microenvironment and appropriate immuno-modulation [21]. This study establishes, for the first time, four murine OSCC cells lines; these were obtained from 4NQO treated transgenic mice. The genetic disruption and aggressiveness of these cell lines, their tumorigenicity, their ability to bring about both local regional metastasis and distal metastasis in C57BL/6 syngeneic mice are defined in the present study. These cell lines and the linked immunocompetent animal model that we have established will facilitate the investigation of therapies that can be used to treat OSCC. Methods Induction of OSCC from K14-EGFP-Tg mice is an oncogenic miRNA associated with OSCC [7, Volasertib kinase inhibitor 8, 14, 15]. The K14-EGFP-Tg mouse has been established in C57BL/6 previously using the murine pri-sequence tagged with a green fluorescence protein (GFP) [7]. For OSCC induction, 100?g/ml of 4NQO was added to the drinking water of 6C8?week-old mice for 16?weeks. Mice were sacrificed at Volasertib kinase inhibitor a time point when their body weight loss was ?1/3, when tumors had begun to interfere with their food uptake, when they showed weakness, or when at a specific endpoint [7, 11, 18]. Establishing the MOC-L cell lines The human OSCC SAS cell line was obtained from the JCRB cell bank, while the FaDu and 293?T ell lines were obtained from the ATCC cell bank. Human cell lines were authenticated by short tandem repeat analysis. Mouse OSCC lesions on the dorsal tongue surface were.